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We discuss Dragon Systems’ approach to the NIST Speaker Recognition
tasks. For the one-speaker task, we employ a combination of methods: a
basic GMM system and two LVCSR-based systems, one using standard
mixture models and the other using nonparametric techniques. We discuss
some explorations of the recently introduced two-speaker tasks based on
the GMM system alone. “Cheating” tests using NIST-supplied keys lead
us to some improvements in channel normalization, and illuminate the
roles that speaker segmentation and segment selection play in these tasks.
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INTRODUCTION

The problem of identifying the speaker in a short excerpt from a telephone
conversation may seem a simple matter for most people if the caller is familiar,
but it is a challenging one for computer-based systems. Dragon Systems has
long maintained that the best way to perform automatic speaker recognition—
as well as other information extraction tasks such as topic identification or
keyword spotting—is through the use of a full large vocabulary continuous
speech recognition (LVCSR) system. We believe that LVCSR systems provide
a natural framework for encoding speech characteristics and for capturing
contextual information invaluable for correctly identifying regions of interest,
whether keywords or speaker intervals.

Beginning in the early 1990s, Dragon has been developing a family of speaker
ID systems which put this philosophy into practice (see, e.g., [1]). We currently
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employ a basic LVCSR-based system, a contrasting Gaussian mixture model
(GMM) system, and a relatively recent addition which starts with the same
LVCSR front-end as our original system but uses nonparametric methods to
score frame sequences. Section 1 reviews each of these systems and compares
their performance and their potential for system combination on the one-
speaker task, using data from several years of NIST Speaker Recognition
Evaluations.

In Section 2 we report preliminary results on NIST’s new two-speaker
detection and tracking tasks. For these initial explorations we have used the
simplest of our speaker ID systems—the GMM system—since it provides the
fastest turn-around for exploratory work. We present the system used for
the two-speaker tasks in the NIST 1999 evaluation and describe a series of
diagnostic studies that illuminate some of the issues faced in moving from
single-speaker to multispeaker data.

1. DRAGON’S SPEAKER RECOGNITION SYSTEMS

To explore the speaker recognition problem, Dragon has developed a family of
three speaker ID systems. The following sections describe each system in some
detail and discuss their performance on data from various evaluations.

1.1. The LVCSR System

Progress on Dragon’s LVCSR-based speaker ID system has been regularly
reported, e.g., [2, 3]. The system uses a basic speech recognizer to transcribe
the speech stream and align the speech to the transcript, providing a frame-by-
frame phonetic label. Using these labels, it then scores a general background
model and a speaker-adapted target model against the speech stream and bases
its speaker decision on the normalized difference of the two scores. We provide
some additional details here.

For the purposes of speaker recognition we use a somewhat simplified
version of Dragon’s standard Switchboard-based speech recognizer [4] to
transcribe the training and test data. The front-end produces a channel-
normalized 44-parameter feature vector every 10 ms, consisting of eight
spectral parameters, 12 cepstral parameters, and the first and second cepstral
differences, which is then reduced to a 24-dimensional vector via an IMELDA
transformation [5].

The recognition models are decision-tree clustered triphone models with
about 12,000 output distributions, trained from roughly 60 hours of Switch-
board-I conversations. Each output distribution is a mixture of up to 16
Gaussian components. The recognizer uses a simple bigram language model
trained from almost 3 million words of Switchboard text. This recognizer
achieves a word error rate of 46.6% on a standard test of Switchboard
conversations (the “CAIP” set). This is considerably worse than our best
Switchboard system (which achieves a 27.2% word error rate on CAIP), but
the recognizer used here does not include such standard features as rapid
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speaker adaptation, vocal tract length normalization, and more sophisticated
interpolated trigram language models, partly for simplicity and speed of
decoding and partly because features such as rapid adaptation are not robustly
estimated on the small samples of speech available in speaker ID evaluations.
We estimate that the recognizer currently used for speaker ID operates with
a word error rate in excess of 50% on the short concatenated excerpts which
characterize NIST evaluation data and using the tight thresholds which speed
decoding to three times real-time. (Unfortunately, we cannot compute word
error rate directly since correct transcriptions are not available for evaluation
data.)

The transcribed, time-aligned recognizer output is scored using a different
set of models and different signal processing. For speaker ID scoring, we
use a 38-dimensional feature vector consisting of 19 cepstra and their first
differences. Higher-order cepstra capture more speaker-sensitive information
which is useful for speaker recognition but damaging for speaker-independent
transcription, as we have found empirically. The use of the higher cepstra
for speaker ID has been discussed in detail in [6], and their effect on our
own speaker ID system is covered in [3]. The scoring models are monophone,
rather than triphone, so that adaptation can cover as many output distributions
as possible given the limited amount of speaker training data available. The
background model is trained from about 35 hours of Switchboard data (the legal
training from the 1996 NIST Speaker Evaluation) and consists of 124 output
distributions, corresponding to 43 phonemes with typically three states per
phone. Each output distribution is a mixture of up to 128 Gaussian components
for a total of about 15,000 Gaussians.

Target models are trained via Baum–Welch adaptation [7, 8] of the back-
ground model, based on the recognizer’s transcription of the speaker training
data. At test time, the transcribed, time-aligned test data is scored against back-
ground and adapted target models and the average score difference is computed
over all nonsilence frames. These raw scores are then corrected for speaker and
handset using HNORM, as in [9].

The LVCSR approach provided state-of-the-art performance in the early years
of NIST evaluations (even with much higher word error rates than today), and
it continues to perform well given sufficient training and test material (e.g.,
2 minutes of training data and 30 seconds of test data). But as the evaluations
have come to focus on shorter test segments, the performance of the LVCSR
system has lagged. We therefore began examining other approaches to the
speaker recognition task.

1.2. The GMM System

To explore the strengths and weaknesses of our LVCSR-based approach,
Dragon built a parallel GMM-based system in 1996. The GMM system was
intended to duplicate as far as possible the scoring of the LVCSR approach,
but without LVCSR: it uses the same 38-dimensional feature vectors, training
protocol, normalization techniques, etc.



78 Digital Signal Processing Vol. 10, Nos. 1–3, January/April/July 2000

FIG. 1. Results on the male data set from the February 1998 NIST evaluation, comparing the
results of our LVCSR and GMM systems on the 3- (top pair), 10- (middle), and 30-sec (bottom)
samples.

The GMM system is modeled on the system described by MIT Lincoln Lab
in [10]. A universal background model consisting of a single 2048-component
Gaussian mixture model is trained from about an hour of speech from the
1996 development set. As in our LVCSR system, target models are trained by
adapting this speaker-independent background model: we aggressively update
component means, weakly adapt component deviations, and leave mixture
weights unchanged. The GMM system requires no recognition stage; we simply
score every frame of speech exceeding an energy threshold and compute the
average score difference (normalized via HNORM) over these frames. To speed
up the scoring given so many mixture components, we introduce a “decoding”
pass where we identify the five best-scoring components in each frame. In
subsequent passes only these top five components are rescored against adapted
and unadapted models. This makes further runs on the data very fast; in
particular, the incremental cost of scoring an additional speaker’s model on the
test data is negligible.

Comparative performance of the GMM and LVCSR systems is presented in
Fig. 1, which shows performance of the two-session training condition on 3-,
10-, and 30-sec test segments from the 1998 evaluation [11]. The GMM system
clearly outperforms the LVCSR system for the shortest test pieces, but the gap
disappears by the time the test duration reaches 30 sec. It would be interesting
to track performance as test duration continues to grow, but suitable data are
not yet available. In the 1999 evaluation, variable-length test pieces were used,
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ranging from close to 0 up to 60-sec pieces, averaging roughly 30 sec in length,
with roughly 80% of the distribution lying between 15- and 45-sec durations.
Not surprisingly, the performance of our systems on the variable-duration data
closely tracked the pure 30-sec results from 1998, with too little representation
at the extremes to yield meaningful time-stratified results.

1.3. The SNP System

The simple “bag of frames” approach of the GMM system works surprisingly
well, but it ignores much useful linguistic information which should improve
speaker recognition performance. In an attempt to capture some of this higher-
level structure, in late 1997, Dragon began development on a new system which
works from the same recognizer output as the basic LVCSR system described
in Section 1.1. As we will show, the additional information provided by the
sequential nonparametric (SNP) system, when combined with our existing
systems, indeed yields a significant performance enhancement.

The SNP method addresses two shortcomings of the existing GMM and
LVCSR systems:

– Independence of frames. Both the GMM and the LVCSR systems make
little use of sequential information, i.e., how speech unfolds in time. The GMM
system treats every frame as independent of all others (so that randomly
permuting frames leaves the score unchanged) and the LVCSR system, though
using somewhat more speech structure, still models frames within a single
HMM state as independent.

– Dependence on an explicit parametric model. Modeling acoustic phenom-
ena as a simple mixture of Gaussians in a very large dimensional space may be
too crude to capture the fine structure of these events.

The SNP system [3] scores sequences of frames without making any
parametric assumptions, by instead making direct comparisons to the target
training data and computing a nearest-neighbor score. It works as follows:

The same forced alignments used by the LVCSR system are here used to
identify sequences of frames in a test utterance corresponding to individual
phonemes. Each such phoneme token is scored against all frame sequences
corresponding to the same phoneme in the target speaker’s training data. For
each pair of tokens, the best alignment is determined via standard dynamic
programming techniques, minimizing the Euclidean distance between aligned
frames subject to various skipping and doubling penalties. To each test token,
we assign the score corresponding to the best match (closest distance) to the
target training data, normalized by the number of frames in the test token.
Because some phoneme sequences in the test data can lack any reasonable
match in the training data (due to data sparsity), and for general robustness, we
then limit attention to the best scoring 75% of the tokens in the test utterance.
We compute the sum of the best sequence comparison scores for this subset,
divided by the total number of frames.

As always, appropriate score normalization is essential but, because the SNP
system is nonparametric, there is no natural background model on which to
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FIG. 2. Results on the female data set from the February 1997 NIST evaluation, comparing the
SNP system to the AFS results, on the 3- (top pair), 10- (middle), and 30-sec (bottom) samples.

draw. Instead we use a cohort method, scoring the test data against 20 same-
gender speakers and subtracting the average cohort score from the target score.
We then perform the standard ZNORM across target speakers. (We have found
no particular improvement using HNORM over ZNORM for the SNP system.)
The cohort normalization makes the SNP system computationally much more
expensive than either the LVCSR or the GMM system.

At the present time, the performance of the SNP system lags behind both the
LVCSR and GMM systems. Nonetheless, although it is the least mature of our
speaker ID systems, it already shows promise, adding valuable new information
to the existing set. Performance on the 1999 NIST evaluation and the benefit
gained by introducing the SNP system are illustrated in the next section.

Dragon is not the first site to explore nonparametric approaches to speaker
recognition (see, e.g., [12, 13]), but most other approaches have treated frames
as independent, neglecting sequential information. It is interesting to see
how the SNP system compares to a simpler nonparametric system which,
like the parametric GMM system, does not use sequential information nor
LVCSR techniques. In such a system, instead of comparing frame sequences,
we compare individual frames, assigning to each test frame the closest distance
to any frame in the target training data. The best 75% of the resulting scores
are then selected, averaged, and normalized as in the SNP system.

Figure 2 compares this all-frame scoring (AFS) system with the SNP system
on data from the February 1997 evaluation, using the one-session training
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FIG. 3. Results on the combined April 1999 one-speaker evaluation data, including GMM
(dashed), LVCSR (dotted), SNP (dot-dashed), and the combined SNP+GMM system (solid).

data. The results are remarkably similar to the GMM vs LVCSR comparison
of Fig. 1. Here again, the LVCSR-based method is not as effective for short test
segments but catches up to (and here surpasses) the simpler system when the
test duration reaches 30 seconds.

1.4. Composite Systems

While the SNP system is not as effective as our older systems in isolation, it
adds important new information to the mix. Figure 3 shows the performance
on the 1999 NIST one-speaker evaluation for all three systems alone, as well
as a system where the score for each test segment is the average score from
the GMM and SNP systems. The latter composite system was submitted as
Dragon’s primary system in the 1999 NIST evaluation. We believe that this
composite system gives the best performance to date on NIST’s one-speaker
task.

We have looked at a number of ways to combine the existing set of systems,
ranging from simple linear interpolation to more sophisticated methods such as
logistic regression. So far, we have seen no significant improvement over linear
interpolation, with the best results coming from the SNP+GMM combination
illustrated here. Ideally, we should seek to combine the systems based on the
relative strengths of each, e.g., using test duration to weight simple systems
more for short test segments, with the emphasis shifting to systems using more
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detailed knowledge as the amount of data grows. This is a subject for future
work.

1.5. Ongoing Research

While the results described above give some indication of the relative value
of our three speaker ID systems at this time, they only begin to suggest the
future potential of these techniques. Given the narrowing gap between frame-
independent and LVCSR techniques as test duration grows, we would like
to explore performance with longer test (and potentially, training) segments
and with improved recognition. We believe that the current highly errorful
recognition may well be limiting speaker recognition performance by forcing
the LVCSR-based systems to score against incorrect phoneme labels and
imperfect alignments. We hypothesize that the recognition problem may be
especially acute for the shortest test pieces. Cheating experiments using correct
transcripts are planned to gauge performance potential.

In addition, much work remains in improving the relatively new SNP system,
including explorations of the best choice of “unit” for token comparison. For the
purposes of the 1999 evaluation, we settled on the phoneme as a compromise
between detailed structure and data sparsity, but other choices (triphones,
multiphones, even whole words for commonly occurring instances) or variable-
length units may provide better performance.

The LVCSR approaches provide a natural framework for incorporating
higher-level knowledge than is available to the single-frame methods. We plan
to examine the use of word choice, speaking style, and prosodic analysis in the
near future. Of course, human subjects use such cues routinely when identifying
speakers. And finally, we are examining ways to move from the single-speaker
systems described above to analyzing data involving multiple speakers, as
described in the next section.

2. TWO-SPEAKER TASKS

NIST recently introduced new components to their annual Speaker Recog-
nition Evaluation: two-speaker detection and tracking. Instead of a sample of
speech from a single speaker, we are provided with a 60-sec excerpt from a con-
versation between two speakers. The detection task is then to ascertain if a
putative target speaker is present in the excerpt at all. The tracking task is to
identify which frames, if any, contain speech from the putative speaker. The
details of the two-speaker tasks and data sets appear in [14].

Eventually, we intend to apply all three systems used for the one-speaker task
to the two-speaker problems. However, we decided to use our simplest method,
the GMM, for the initial exploration of the two-speaker tasks. NIST provided
two-speaker data in both the April 1999 evaluation and in a dry run held in
September 1998; we have included results on both data sets in the sections that
follow.
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2.1. Two-Speaker Tasks: Baseline Performance

To establish a baseline to which we could compare potential improvements,
we assembled a system based on the GMM method, using the same background
and adapted speaker models as for the one-speaker task. In the following
discussion we will only touch on the salient differences with respect to the one-
speaker system.

For the baseline system, we run the channel normalization used for the one-
speaker task over the entire two-speaker test sample as if it were speech from a
single channel, effectively averaging the corrections for the two channels. This
procedure clearly ignores issues specific to the two-speaker environment, such
as overlapping speech and differences (gain, noise) between the two channels.
We will return to these issues in later sections.

Once channel normalization is performed, we wish to identify the frames
of the test sample which are likely to come from a target speaker. However,
individual frame scores are too noisy to form the basis of a decision on speaker
assignment. Our approach is to chop the conversation into segments which are
relatively pure in a single speaker, while requiring segments to be at least a few
hundred frames in length, to provide the needed statistical sample to separate
target and background speech. There are a variety of ways to generate such
segments; for the baseline system, we simply cut each conversation into regions
bounded by silence, as defined by an energy threshold, and require at least 200
frames (2 sec) of data in each segment. We have found empirically that our
performance degrades when much shorter segments are allowed.

We score individual frames as we did for the one-speaker task, computing a
score difference between a generic background model and one adapted to the
training data from the putative speaker. For each segment produced by the
chopping algorithm, we compute the mean score difference over the frames
above an energy threshold. For the tracking task, we assign each frame in a
given segment the mean score difference over the segment. For the detection
task, we select the best-scoring 50% of the segments and compute an average
score difference over the frames in the selected segments.

We then apply ZNORM to normalize the scores from both the tracking and
the detection tasks (for simplicity, since HNORM is greatly complicated by the
two-speaker environment). The final results are shown in Fig. 4 for the April
1999 NIST evaluation data, where the detection task results are given by the
solid curve and the tracking results by the dashed curve. Here we computed
the means and variances required by ZNORM from two-speaker data from the
September 1998 dry run. Also shown in Fig. 4 is a dotted curve indicating the
performance of our GMM system on the one-speaker detection task for the April
1999 data.

Reducing the gap between one- and two-speaker performance will require
more sophisticated approaches to the problems of channel normalization,
speaker segmentation, and scoring in the two-speaker context. In the following
sections we discuss a number of potential improvements to our baseline method.
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FIG. 4. Results on two-speaker detection (solid) and tracking (dashed) tasks for the April 1999
NIST evaluation. Also shown are results for the GMM system on the one-speaker task (dotted).

2.2. Alternative Methods for Segmentation

Segmentation of two-speaker conversations using silences is certainly a
simplistic approach. It might seem that the use of more detailed information,
such as speaker models, should improve our ability to distinguish speaker and
background frames. We have investigated two methods of explicitly including
the models into the segmentation task: sliding means and two-state HMM
decoding. At this stage, neither of these approaches has outperformed silence
chopping.

The sliding means approach replaces each individual frame’s score with the
mean score over a symmetric window around it, smoothing the noisy frame-by-
frame scores. The size and shape of the averaging window can be manipulated
to balance sensitivity to local information and score stability. A simple threshold
can then be applied to the smoothed scores to assign each frame to speaker or
background.

The decoding approach treats the tracking task as a single, two-state HMM
problem. By using the speaker-adapted GMM as one state model and the
background model as the other, we can “decode” two-speaker conversations into
speaker and background frames. The two important parameters for this system
are a bias term for the relative target/background probability and a switching
penalty which affects the typical duration of each state.

We have implemented both the decoding and sliding means systems and have
investigated a wide range of parameter settings for each. Representative results
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FIG. 5. Results for two-speaker tracking task using the sliding mean (dashed), decoding
(dotted), and silence chopping (solid) methods, on September 1998 dry run data.

for these approaches on the tracking task of the September 1998 NIST dry run
are compared in Fig. 5 to the baseline system of the previous section. It can be
seen that the preliminary results for these more sophisticated approaches are
not yet competitive with the naive silence chopping method.

We hypothesize that the poorer performance of the model-based methods
is due at least in part to their greater sensitivity to inappropriate channel
normalization and the presence of overlapping speech. The best results may
ultimately come from adopting an intermediate approach to segmentation,
which does not go so far as to construct a speaker-specific model, but which
is specifically designed to search for speaker changes. Examples include
Hotelling’s T 2-test and the BIC criterion, as used for speaker change detection
in Broadcast News recognizers [15]. We have done some initial explorations of
these techniques, but so far have not found any significant improvements from
their use over the silence chopping method.

Our lack of success with these explorations of segmentation has led us to
seek a way to analyze comprehensively the problems specific to the two-speaker
tasks.

2.3. “Cheating” Tests

The new problems presented by the two-speaker tasks can be broken
down into the related areas of channel normalization, segmentation of the
conversation into speaker turns, and selection of the segments corresponding



86 Digital Signal Processing Vol. 10, Nos. 1–3, January/April/July 2000

to a single speaker. We decided to use a series of “cheating” experiments to
explore how best to address these issues. By “cheating”, we are referring to the
use of our knowledge of the true speakers in each conversation to allow perfect
segmentation and segment selection. The details of which speaker is talking in
which frames are provided by locality files, made available by NIST.

Our goal for the initial study was to create a test whose results could be
directly compared to the one-speaker results. This was possible due to the
way NIST designed the one- and two-speaker tasks: each one-speaker test
utterance corresponded to one side of a two-speaker test conversation. However,
the one-speaker tests were taken from the single-channel recordings so that
effects such as overlapping speech or cross-channel noise were absent. An
energy threshold was applied to the single-speaker recordings, and the segments
corresponding to speech were concatenated together to produce the one-speaker
test files. Using the locality files, we could create new versions of the one-
speaker test files by extracting the corresponding segments from the two-
speaker conversations. However, this version of the one-speaker tests would
still contain the overlapping speech and channel noise from the other speaker
in the conversation. We refer to this process as perfect chopping, i.e., identifying
the frames containing speech from one side of a conversation, including any
overlaps with the other side. Results on the concatenated two-speaker extracts
can then be compared directly to our results on the standard one-speaker task.

We first considered the relative importance of chopping and channel normal-
ization by constructing two tests:

(i) Perfect Chopping: in this test, we applied channel normalization to the
two-speaker conversations as a whole, before chopping them using the locality
files.

(ii) Perfect Chopping and Channel Normalization: here we first chopped
the two-speaker conversations, and then applied channel normalization on the
extracted segments. Absent an algorithm to subtract overlapping speech or
noise, this test corresponds to the optimal two-speaker system.

Once we had constructed these pseudo-one-speaker tests, we processed them
through our standard one-speaker GMM system. For simplicity, we restrict
ourselves to the male tests in the discussion that follows, but the performance
on the female test set is similar.

Figure 6 shows the results of these two cheating tests on the NIST September
1998 dry run test set, compared to the male one-speaker performance with
the GMM system and the baseline results on the two-speaker detection task.
Significant, and roughly equal, advances are made as we sequentially introduce
perfect chopping (dotted) and perfect channel normalization (dashed). It can
also be seen that, even for the optimal system, issues such as overlapping speech
and channel noise from the other speaker continue to degrade performance in
the two-speaker task relative to the one-speaker task.

The previous experiments have not addressed an important practical issue:
even in the presence of perfect segmentation, it is a nontrivial task to select the
segments corresponding to the same speaker. We have only established so far
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FIG. 6. Results of “cheating” tests on the NIST September 1998 dry run sample.

that together, optimal segmentation and segment selection yield a significant
improvement in performance. As discussed above, our current approach to
segment selection is simply to compute the mean background–target score for
each segment produced by the chopping algorithm and to assign the best-
scoring 50% of the segments to the putative speaker. However, there is a tension
between the length of the segments and their associated purity. Clearly, we
can ensure that each segment is very pure in a single speaker by chopping the
conversation very finely. However, the resulting large variance in scores on these
very short segments may make it impossible to choose the segments coming
from the speaker of interest. Longer segments with lower purity may actually
yield better performance, as the score variances can be made small enough to
allow the algorithm to identify the correct segments more accurately.

We have examined the segment selection problem with a third cheating
test, where we try to construct a best-case scenario: perfect determination
of segment boundaries, and the appropriate channel normalization for the
speaker of interest. For each two-speaker detection test, we start by chopping
the conversation using the locality file information. The speaker of interest
is defined as the target speaker, if actually present in the conversation, or
otherwise either of the true speakers, chosen at random. We then compute
our channel normalization based only on the segments coming from the
speaker of interest, but apply the resulting corrections to all segments. The
mean background–target score is calculated separately for all segments, and
we choose the best scoring 50% of the segments to determine a speaker
detection assignment, as done for the baseline system. In Fig. 7, we compare
the performance of this system (dashed line) on the detection task to that of the
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FIG. 7. Comparison of baseline (solid line) performance with cheating tests where the utterance
is chopped according to perfect information but segments are selected according to their scores
(dashed line), and with perfect chopping and segment selection (dotted line).

system using silence chopping (solid line), on a subset of the September 1998 dry
run data (the tracking subset). The segmentation based on locality files actually
performs arguably worse than the silence chopping. Thus, the silence chopping
makes up for the impurities in its segmentation through the increased stability
in the scores provided by the longer averaging windows. If we use the “perfect”
segmentation, but select only the segments corresponding to the speaker of
interest, the third (dotted) curve results, yielding performance comparable to
that seen in the previous cheating test. Although we can see that the current
chopping and segment selection is not optimal, it is also clear from these results
that they will have to be optimized as an ensemble.

We have thus established that most of the difference between one- and two-
speaker detection performance can be recovered through optimizing the related
issues of segmentation, channel normalization, and segment selection. Ideally,
one might hope for an integrated approach which simultaneously optimizes all
three of these elements. A practical first step in this direction is to make the
channel normalization more localized.

2.4. Two-Speaker Channel Normalization
Up to this point, we have been using the same channel normalization

algorithm for the two-speaker tasks as we applied to the one-speaker problem.
This algorithm computes a correction for each cepstral parameter based on the
mean of that parameter over the whole utterance. To ensure that background
noise or silence is not included in the average, we use only frames whose
energy lies in the upper 50% of the range of energies observed in the utterance.
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FIG. 8. Effect of sliding channel normalization for various choices of window size and ρ.

This provides robustness for a single-channel environment. However, in a
two-channel environment, the channel characteristics can differ significantly.
Discarding the lower 50% of the energy range can effectively suppress most of
the frames from one side of the conversation. When we instead apply an absolute
energy threshold, we obtain a significant increase in performance, as can be seen
in Fig. 8 by comparing the baseline results on the September 1998 two-speaker
detection task to the results of the simple energy threshold (labeled “improved
baseline”).

Further improvements in performance can be achieved by making the
channel normalization more localized and thus more responsive to whichever
channel is currently active. We have considered two approaches to constructing
a more localized channel normalization algorithm. The first uses a sliding mean:
for each of the cepstral parameters, we choose a target value, θi , and introduce
a by-frame correction, 1i , of the form

1i = θi −
(
ρµ

glob
i + (1− ρ)µloc

i

)
, (1)

where µloc
i is the average of ith parameter over a predefined window centered at

the current frame, µglob
i is the same average over the entire utterance, and ρ is a

parameter defining the relative strength of the global and local corrections. An
energy threshold is again applied to remove silence frames from both local and
global means. We then use this channel normalization as input to our baseline
system; the improved baseline system described above corresponds to ρ = 1. We
have analyzed the September 1998 dry run sample with several different values
of ρ and window size. The results appear in Fig. 8, compared to the original
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FIG. 9. Comparison of two-speaker detection results using the original GMM-based method
(dotted), sliding channel normalization with ρ = 0.30 and a window of 200 frames (dashed), and
channel normalizing within each segment produced by the silence chopping (solid). Results for the
detection task on September 1998 dry run data.

and improved baseline systems applied to the same subset. Introducing some
local information clearly improves the performance of the system, though the
improvement does not seem to be a strong function of window size or ρ.

Another way to approach the channel normalization problem is to try to
segment the conversation first, and then channel normalize the segments
individually. If we can identify the speaker boundaries with some level of
accuracy, this approach may provide higher speaker purities and thus yield
better results than the more naive window-based approach. To this end, we have
run the silence chopping first, yielding segments of at least 2 sec in length, and
computed a flat (ρ = 1) channel normalization separately within each segment.
Figure 9 compares the result of chopping first to the baseline approach, and a
representative result from the sliding CN job (ρ = 0.30, 200-frame window), on
the detection task for the September 1998 dry run data. Channel normalizing
within segments from the chopping algorithm yields a small win over the sliding
window approach.

2.5. Discussion
The results of Section 2.4 demonstrate that we can enhance performance by

applying channel normalization locally within the segments of a two-speaker
conversation. The cheating experiments have shown that even more can be
gained if we can accurately identify a group of segments from a single speaker
and channel normalize the ensemble. The interaction between the purity and
the length of the segments produced by the chopping algorithm and our
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corresponding ability to select segments coming from a single speaker will
be a focus of our future studies. Ultimately, an approach which combines
segmentation and clustering into a single process may provide the best results.
Though we have seen some noticeable improvements in performance, it is clear
that we are still far from the optimal system for the two-speaker task.

CONCLUSION

The speaker ID systems presented here offer a range of approaches to the
speaker recognition problem and combine to yield state-of-the-art performance
on the one-speaker task. Nonetheless, there remains significant room for
improvement of single-speaker performance. Much is left to do to optimize the
core systems individually, particularly the SNP approach. We also anticipate
performance gains from exploration of the contexts in which each of the
systems yields the best results, leading to improved methods of combining the
systems.

The move from single-speaker to multispeaker data introduces a number of
new challenges to speaker recognition systems, and we are only beginning to
come to grips with the processes of speaker segmentation and segment selection.
At this stage, we have explored these issues using only the GMM-based system,
and there is clearly much potential for further refinements. We will also deploy
our other (LVCSR-based) systems for the multispeaker tasks. In particular,
we hope to take advantage of the access they provide to higher-level analysis,
such as turn-taking cues for speaker separation. It seems likely that optimal
performance will come from a combination of approaches.
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